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Spatiotemporal patterns and localized structures in nonlinear optics
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We show that in a degenerate optical parametric oscillator with saturable losses for the frequency down-
converted field, the steady state can be destabilized via either a Hopf or a Turing instability. The relative order
between the two bifurcations is controlled by the linear loss of the saturable absorber. If the Turing bifurcation
is subcritical and the Hopf bifurcation occurs in the hysteresis domain involving the homogeneous and inho-
mogeneous states, steady localized structures are generated below the Hopf bifurcation and time-periodic
localized structures are generated above the Hopf bifurcdi&i063-651X%97)01912-¢

PACS numbgs): 05.40:+j, 42.65.Sf, 42.60.Mi

[. INTRODUCTION Hopf bifurcation always appears after the Turing instability
on the branch of steady-state solutions and that the distance
Localized structures(LS’s) are solitonlike (i.e., ho- between the two instabilities cannot be made arbitrarily
moclinic) solutions of partial differential equations that con- small [9]. A similar result holds for intracavity second-
nect coexisting stable homogeneous and inhomogeneotdrmonic generation. In both cases, the impossibility to con-
steady states. This situation is realized, for instance, by #&ol the relative position of the two bifurcations is due to the
subcritical Turing instability. In optics, an early report on fact that the ratio of the diffraction coefficients is either 2 or
localized structures was given [d], which described nu- 1/2 and cannot be varied. This results from the phase-
merical simulations of pulse propagation in bistable systemsmatching conditiof10]. A completely different mechanism
Later on it was shown that the existence of LS’s does nofor the generation of time-periodic transverse patterns is a
require a bistable homogeneous steady state. They were anaopf bifurcation emerging on the Turing branch as a second-
lyzed more systematically if2] in relation with a general-  ary bifurcation. In this case, the Hopf instability arises from
ized Swift-Hohenberg equation. Analytical results on ho-the nonlinear interaction between transverse modes. This
moclinic solutions of this equation are found [i8]. More  mechanism was described[ihd] for two counterpropagating
recently, LS’s have been obtained in an absorptive nonlineagoherent beams in a Kerr medium and[ik2] for the LL
optical system4]. The purpose of this paper is to analyze model.
the interaction of Turing and Hopf instabilities in a nonlinear  This paper is organized as follows. After briefly introduc-
optical system and to study the implications of this interac-ing the model of the degenerate optical parametric oscillator
tion in the dynamics of the LS’s. Such an interaction hasSec. I), we present a linear stability analysis of its non-
been investigated in nonlinear chemistry and hydrodynamicgivial homogenous steady-state solutigBec. Il)). The ana-
where it stems from reaction-diffusion equatiof. The |ytical and numerical analysis of the interaction between the
results of these analyses have been compared with expemuring and Hopf instabilities is described in Sec. IV on the
ments[6]. The main difference brought in by considering basis of a normal form analysis. Stationary and time-periodic
optical systems is that the diffusion is often replaced by dif-jocalized structures are studied in Sec. V in relation with the
fraction. When the system is nonlinear this leads to reactionyarious dynamical behaviors identified in the bifurcation dia-
diffraction equations, which modifies completely the stability grams derived in Sec. IV. We conclude in Sec. VI.
problem. For instance, negative diffusion leads to unstable
solutions, while the diffraction coefficient may be positive or
negative, corresponding to beam focusing or defocusing. Il. DESCRIPTION OF THE MODEL
Furthermore, the diffraction coefficient is essentially the in-
verse of the photon wave number that is constrained by the In this paper we consider a degenerate optical parametric
momentum conservation law. Hence it cannot be variedscillator (DOPO driven by an external field at frequency
freely. In optics, time-dependent transverse periodic pattern8w. This field is converted by a quadratic nonlinear medium
have been studied numerically in a bistable system where thiato a field at frequencw. In addition, we assume the pres-
Hopf bifurcation is on the lower branch and the Turing bi- ence of a saturable absor&A) that acts selectively on the
furcation is on the upper brancly]. In this model, the field at frequencyw. Saturable absorption is modeled by a
Lugiato-Lefever equatiofthe LL model includes diffraction collection of two-level atoms that leads to an intensity-
[8]) for the field is coupled to a diffusion equation modeling dependent effective absorption coefficient. This model for
the nonlocal response of the nonlinear medium. For the dehe DOPOSA was introduced [14]. Assuming fast atomic
generate optical parametric oscillator, it was shown that theelaxation, the evolution equations in reduced variables are
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Turing instabilities correspond to the occurrence of a zero

real root(i.e., fo=0) of the characteristic polynomial with
K#0. The equationf,=0 determines the intrinsic wave
. . . numberk; and the critical-field amplitud&,; at which the
ratio of the photon lifetimes at frequenciesand 2. The Turing bifurcation takes place. This equation is implicit since

saturable absorber is characterized by its saturation intensi%e relation between the field of mode 1 and the input field is
(1/S) and its linear loss coefficieR. £, is the transverse iven by Eqs.(4)

Laplacian. Time has been scaled such that the decay rate gf Hopf bifurcations occur if a pair of complex-conjugate

the f'?'.d Eq Is unity. !\lote that we assume, for the 'sake Ofroots has a vanishing real part and a nonzero imaginary part.
simplicity, that both fields are resonant with the optical Cav-r calculations show that there can be zero. one. or two

ity (i.e., zero cavity detunings Hopf bifurcations. The critical intensities of mode 1 at the
Hopf bifurcations are

In these equations;; is the field at frequencyw, E, is the
driving field which is chosen real by convention, apdk the

Ill. LINEAR STABILITY ANALYSIS

Equations(1) and (2) have two types of homogeneous |E_1H+|2=R_7’i VR(R_Z”)_
steady-state solutions, with, equal to or different from zero - ¥S
E_1=O, E_2= E,, 3) The number of Hopf bifurcations is determined by the reality

condition of |E,y-|2. The frequency of the periodic solu-
L tions that emerges at the Hopf bifurcation is
E,=E —EZ, (4 Q%=9(2|E1y-|?>—7). An exhaustive classification of the
bifurcation diagram for the homogeneous steady-state solu-
tions is given in[14].

We fix y=1, S=0.1, and letR and E, be the control
parameters. For these parameters, there are two Hopf bifur-
, - cations. We concentrate on the Hopf bifurcation that has the
E|<E;=1+R. The nonlasing3) and the lasing4) solu- |5y er intensity threshold. We find that there is a critical lin-
tions coincide atE;=E;,. We perform a linear stability oo, lossR,~5.47 such that foR larger(smallej thanR, the
analysis of the steady state. With transverse periodic bounqqopf bifurcation occurs aftetbefore the Turing instability.
aries, the linear deviation from the steady lasing state is prog,. p— R., the system undergoes both instabilities for the
portional to expt+ik-r), where r stands for the transverse ¢;me value of the input intensity. In Fig. 1 we display the

colo;fjinateeraknzd the ktranivoeri_eh.w?ve vcladat:t.ovelrifie; tthe bifurcation diagrams of the steady-state solutions in the pa-
relation (£, +k“)expgk-r)=0. This formulation leads to a - o0, plane Ig=|E,|?,k*). We show in this figure the

characteristic polynomial that is quartic mand whose co- ; . S
- . -~ . stable and unstable domains associated with inhomogeneous
efficients are functions ofK_=k . For the variables perturbations
Uy p=E17Eqp andui ,=EJ ,~ ET,, the quartic polynomial We stress that this analysis is performed only for the ho-
1S mogeneous lasing solutiof@). A similar stability analysis
4 shows that the homogeneous nonlasing solut®s always
P(4))= 2 fAD 5) stable against small transverses perturbations. Note also that,
’ = " in the absence of saturable absorb®#=Q), the Turing in-
stability can occur on the trivial solution branch, i€,<E,,
where [9].

E :1+ E_2+—_,
=178 1+S/E,?

where the overbar refers to steady states. R#<1

(RS>1) the steady-state intensiff,|2, as a function of
E,, is monostabldbistablg. The solution(3) is stable when

f,=1, 6) IV. INTERACTION BETWEEN TURING AND HOPF

fo=2(y— ), ) INSTABILITIES
A. Amplitude equations
f,=4y|E |?—4yB_+5K+ B2 — B2+, (8) We have shown in Sec. Ill that the DOPOSA model ex-
hibits Turing and Hopf bifurcations leading to steady inho-
f1=29(82 = B2) +4y|E1|2(y— B_)—2B_(¥*+K) mogeneous transverse and/or homogeneous temporal-
periodic patterns. The main point now is to study the stability
+8yK, C) of the emerging branches, in particular to show analytically
that the system can exhibit a bistability between the Hopf
fo:(ﬂg—52++4K)(72+ K)—4y|E_1|2 and Turing branches. To this end, we develop a standard
L nonlinear analysis and derive amplitude equations. To cap-
X (yB_+2K—v|E4|?), (100  ture analytically the nature of the interaction between the
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iko)|H|2+ (kg +iky)|H|*. The coefficients Bn=E,—Et
and B,,=E,— E,;y measure, respectively, the distance from
the Turing and the Hopf bifurcations. In the vicinity of the
codimension-2 point, the coefficiehf is always positive,
which means that the Turing branch emerges subcritically
from the lasing homogeneous state. Hence, 8ge>0, the
stable solution is on the uppére., large amplitudebranch

of solutions. On the other hand, the Hopf oscillatory branch
is supercritical: Oscillation amplitudes vanish@s—0. The
amplitude of the Hopf solution is therefore expected to be
much smaller than the amplitude of the Turing structure. In
the following discussion, we therefore neglect the terms pro-
portional to|H|*. Furthermore, we impose, for mathematical
simplicity, k;=k,=0. As will be seen in Sec. IV B, these
approximations are in good agreement with the numerical
simulations. In addition, we eliminate adiabatically the
phasesb,, and ®,,, which are introduced through the polar
decompositionaM = mexp(®P,) and H=hexp(®d;). Under

FIG. 1. Linear stability curves associated with the Hopf and thethese approximations, the dynamics of the DOPOSA near the
Turing solutions. We plot the fourth power of the transverse Wavecodlmen5|on-2 point admits four types of solutios: the

number versus the homogeneous inten'4s'1tﬂy=|E_|2 The param- uniform Zsolutionmo=rz_0 andho=0, (if) the pure Turing so-
eters arey=1.0 andS=0.1. By changing the vzlll;e of the pump 'F’“O” Misos= (11 |1_+4'8m)/2’ (iii) the pure Hopf solu-
parameteR, we can distinguish beteween three caggsR=5.0,  tON h05=2i VB, and(iv) the Hopf-Turing mixed-mode so-
(b) R=6.0, and(c) R=5.47. lution M7= —k= Vk*=4(Kol3— 1) (Bm+126n)1/2(Kol 3
—1) andH, 5= Bn+ koM o, Wherek=Kgl ,+138,+1;.

For now, we restrict our analysis to the domain of param-
eter space in which the Hopf bifurcation is the primary in-
stability: Bn,—Bm=E;t—E;4>0. Let us begin with the

Hopf and Turing branches, we work in the vicinity of the
codimension-2 poinE,=E;;=E,r, where the two bifurca-

tions C°"’!C'9'e- At th|s pomt,lone Of_ the rgql rqot; OT the study of the linear stability of the solutions)—(iv). The
characteristic equatiofs) vanishes(with a finite intrinsic trivial solution (i) becomes unstable wheg,>0. We per-

wave numberk=k.#0) and two others roots are purely turb the pure Turing solutior(i) as M=my,+u and

imaginaryA =+ i{}y,. Near this critical point, the dynamics y_, “\ith uy<1. We substitute these relations into the
of the system can be de_scrlbed by a linear superposition i?implified real form of the amplitude equatiofisl) and(12)
the Hopf and the Turing solut|on$-l(t)1He>.<pQQHt)+ and upon linearization we obtain

M(t) 1 expikx)+c.c., wherely, andly, are the eigenvectors
of the linearized operator derived from Eq%) and (2) and
H(t) andM(t) are, respectively, the amplitude of the Hopf au v

and the Turing modes. By performing an expansion in terms ot 26,4, ot &0, (13

of a small parameter that measures the distance from the

critical point, the evolution equation of the amplitudest)

and M(t) can be obtained from the solvability condition. Where&; =28+ 1,m%, 5 andé,= 28+ komZ, ,. From Eq.
Such an analysis has been performed in the case of reactiotit3) we deduce that the Turing solutidi) is stable when
diffusion systems where the Hopf and the Turing bifurca-the two conditions are meg; >0 and¢,<0. Similarly, the
tions are both supercriticdb]. If the Turing bifurcation is linear stability analysis of the solutiofiii) shows that the
supercritical, third-order terms are sufficient to provide thepure Hopf solution(iii) remains stable foiB,>0 only if
evolution equations of the amplitude functions. If the Turing B> Kk,8;, . Finally, the linear stability of Hopf-Turing solu-
bifurcation is subcritical, fifth-order terms are necessary. Irtion (iv) shows that it is stable if the roots of the quadratic
this case, the evolution of the amplitude associated with th@olynomial A2— (u+ ») A+ (u+ o) v=0 are both negative,
Turing and the Hopf solutiongl3] is given by with
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FIG. 3. Bifurcation diagram obtained numerically for the field
|E,| at the frequencyw versusg,. The parameters arB=4.5,
) ) . . Ry S=0.1, andy=1. The full and the dotted lines indicate, respec-

tively, the stable and unstable homogeneous steady states. The stars

B _O 4 _O 1 BC ﬁ1 indicate the difference between the maximum and minimum Turing

1 ' ) t amplitudes. The blackwhite) circles correspond to the difference
between the maximun and minimum Hopf-Turing mixed-mode
Bh (Hopf) amplitudes.

. . . . B. Numerical simulations
FIG. 2. Bifurcation diagram obtained from the normal form

analysis. The full and the dotted lines correspond, respectively, to  Our numerical simulations are concentrated on the param-
stable and unstable solutions. The parameterd a@.1,1,=1.5,  €ter range corresponding to monostability of the steady-state
1;,=0.6, andk,=—0.2. B.=E,;—E4 is the distance between the homogeneous solutior8S<1 and to a leading Hopf bifur-
two thresholds associated with the Turing and the Hopf bifurcationcation E;;<E,; . In this way, we can directly compare our
results with those of the normal form analysis derived in the

Mzﬁm+|zﬁh+[(3k2|3—5)|\/|§szs+ 3, preceding subsection. To this end, we chod3e4.5,
) ' S=0.1, andy=1. The corresponding bifurcation diagram is
+Kal2+3138h M 1 o6 (14 shown in Fig. 3. The Turing bifurcation & is subcritical

and generates a domain of bistabiliy, <E,<E,;;. The
v=2k2(I3M§S'25+I2), o=—2(Bn+ kszs'ZS). (15 upper branch corresponds to stable strigg®® numerical
simulations are performed with one transverse dimension
The results of the above stability analysis are summarizethat fill the transverse plane. Stars on the upper branch give
in the bifurcation diagram displayed in Fig. 2, where wethe maximum of the stripe amplitude. & =E,, a super-
have plotted the amplitude of the solutiofig—(iv) versus critical Hopf bifurcation takes place.
B . Both the pure Turing and Hopf-Turing branches appear We have verified that the stripes displayed in Fig. 3 are
subcritically, while the homogeneous Hopf branch emergestable. Stability means here that taking the stripe structure
supercritically. For larger values ¢}, , the steady inhomo- obtained for a givelk,; as an initial condition, integration of
geneous solutiom,s emerges from the homogeneous solu-Egs. (1) and(2) for E,=E,;* ¢ yields a new stripe pattern
tion at the Turing point and is unstable until it reaches a limitwith the same wave number but a slightly modified ampli-
point 8,,= B, from which the brancin,; emerges stably. As tude. The time-periodic solutions that emerge from the Hopf
a consequence of this subcriticality, there is a domairbifurcation are obtained by taking as initial condition the
B1<Bh<0 of bistability between the Turing branch and the unstable homogeneous state perturbed by a small-amplitude
homogeneous steady-state branch. This solution becomes umhite noise. In the long-time limit, we obtain a homogeneous
stable forB,>0 and a stable Hopf brandf, is observed. solution in which all points oscillate with the same phase and
On the other hand, the Turing branch persists up to the valuamplitude. The numerical results, displayed in Fig. 3, pro-
Brn=Bni- As can be seen in Fig. 2, there is a finite domainvide evidence for the fact that stable Turing structures and
0< Br< By in which there is bistability between the Hopf homogeneous Hopf solutions coexist in the domain
and the Turing branches. E,y<E,<Ety. Note that bistability between the pure Hopf
Above the transition poing,,= By the Turing branch be- and Turing solutions as a dominant dynamical behavior has
comes unstable and the dynamics of the system give way toeen observed in two-component reaction-diffusion systems
Hopf-Turing solutions. However, the pure Hopf oscillatory [5,6].
solution remains stable and coexists with the Hopf-Turing In the domainE,>Esy, Turing solutions become un-
solutions. stable and give way to Hopf-Turing solutions. These solu-
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tions. The parameters are=1, R=4.5,S5=0.1, andE,=6.78.(a)
Real part of the electric fiele,. (b) Real part of the electric field 1
E,. Maxima are plain white and mesh number integration is 80. E
=

tions naturally exhibit oscillations in both space and time.
Such solutions are illustrated in Fig. 4. Note that for
E,>Ey there is also bistability between the mixed Hopf-
Turing branch and the pure Hopf solutions.

As we shall see in the following section, the occurrence of
bistability between the pure Hopf branch and either the pure
Turing or Hopf-Turing mixed-mode branches leads to a large SPACE
class of localized patterns. This problem is analyzed in the
following section.

c d
Space ‘
FIG. 4. Time-space map for the Hopf-Turing mixed-mode solu-

FIG. 5. Localized patterns. Same parameters as in Fig. 3. The

real part ofE, is plotted in the time and transverse space coordinate

plane. The color code is the same for the four figuresEREevaries

V. STATIONARY AND TIME-PERIODIC from its minima(black to its maxima(white). (a) and (b) Steady
LOCALIZED STRUCTURES localized structures foE,=5.8. (c) and (d) Self-pulsing localized

The numerical simulations reported in this section are ob_structures folE,=6.5. The mesh number for transverse integration
is 300.

tained in one transverse dimension, using periodic boundary
conditions. Let us consider the various domains of input field

amplitude that appear in the bifurcation diagram of Fig. 3.order to seed a LS, the initial homogeneous state has been
As we shall see, different types of localized structures exisperturbed by a local amplitude increase. Such perturbations
that are associated with each of these domains. We considevolve rapidly towards stable LS’s. The number of peaks of
here only a numerical study of these solutions, an analyticahe LS depends on the initial condition. Note that the unper-
approach to the problem being far beyond the scope of thaurbed background should undergo the Hopf instability and
present report. ForE,  <E,<E;4 corresponding steady oscillate homogeneously. However, it appears that this time-
stripes(pure Turing branch, see Sec. I\ e have observed periodic structurgpure Hopf modgis unstable against the
steady LS’s. The LS’s connect the branch of Turing patterngrowth of traveling wavegTW’s). The simulations show

(in this case, the stripgsnd the stable homogeneous solu-that these TW's propagate with opposite directions on each
tion. Two examples of steady LS’s are displayed in Figsside of the peaks. These TW's have the form
5(a) and 8b). The difference between both cases is due onlyexdi(2#/Aty)(X*uvt)]+c.c. The wavelengtAr, selected

to the initial condition, all other parameters being the sameby the nonlinear dynamics is not linked to the Turing wave-
They have the same properties as those analyzgji8|. In length and the amplitude of the TW'’s is smaller than that of
the domaing,; <E,;<Ety, the homogeneous time-periodic the Turing structure. This feature is illustrated in Fig. 6,
solution coexists with steady stripes. Time-periodic LS’s aswhere the time-periodic LS of Fig. 5 is represented at three
sociated with these coexisting solutions have been observedifferent times. Clearly the TW's originate from the wings of

A typical space-time configuration of the electric field is the LS. Therefore, they appear to be the result of a nonlinear
shown in Figs. &) and 3d). In this example the LS consists interaction between the homogeneous Hopf modes and the
of two stationary peaks. Their amplitude and the distancd.S. Let us notice that the temporal frequency of the TW's
between them are essentially those of the Turing structure. loorresponds to the frequency of the pure Hopf solution ob-
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FIG. 7. Bands of the localized Hopf-Turing mixed-mode solu-
tion surrounded by diverging traveling waves. The parameters are
y=1, R=4.5,5=0.1, andE,=6.78. (a) Real part of the electric
field E;. (b) Real part of the electric fiel&E,. Maxima are plain
white and the mesh number integration is 300.

[ W N5 A T bistability between the Turing structures and the Hopf solu-
50 100 150 200 250 tions occurs. Such behaviors have been described in
SPACE react|on-d|ffu_s_|on processes vyhere ’Fhe two b_lfurca_tlons are

both supercritica[5,6]. As the input field amplitude is fur-
FIG. 6. Three sections taken from Figch The time sequence ther increased, the Turing structures lose their stability and

is t1<t,<ts. we observe the coexistence of Hopf-Turing spatio-temporal
structures and the pure Hopf modes. These results obtained
served in the absence of L®e., v=QyAmw/27). from the normal form analysis are supported by numerical

As the input electric field is further increased, the TuringSimulations of the full dynamical mod¢Egs. (1) and (2)].
structures become unstable and give rise to the Hopf-Turin§ve have shown that the coexistence of different types of
mixed mode aE,=Eqy, as discussed in Secs. Il and IV. In solutions(stationary and/or time periodi¢s associated with
the domainE,>E+, the Hopf homogeneous oscillatory so- @ large variety_ of I_ocalized structures. A numeri(_:al study of
lution coexists with the stable Turing-Hopf space- and time-Pattern formation in the DOPOSA, performed with the help
periodic pattern. In this domain, another class of time-Of a detailed analysis of the bifurcation diagrams, allowed us
periodic LS’s is observed. They are illustrated in Fig. 7.to identify previously unrecognized time-periodic localized
They consist of oscillating multiple peaks originating from structures. Our predictions are applicable to other nonlinear
the Hopf-Turing mixed mode, surrounded by travelingSystems and are important for the identification and the un-
waves propagating in opposite directions. The number of osderstanding of the various spatiotemporal behaviors ob-

cillating peaks included in the LS depends only on the initialSe€rved in practical devices. The bifurcation analysis of the
condition. two-transverse-dimensional problem will be the subject of

future work.

VI. CONCLUSION
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