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Spatiotemporal patterns and localized structures in nonlinear optics
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We show that in a degenerate optical parametric oscillator with saturable losses for the frequency down-
converted field, the steady state can be destabilized via either a Hopf or a Turing instability. The relative order
between the two bifurcations is controlled by the linear loss of the saturable absorber. If the Turing bifurcation
is subcritical and the Hopf bifurcation occurs in the hysteresis domain involving the homogeneous and inho-
mogeneous states, steady localized structures are generated below the Hopf bifurcation and time-periodic
localized structures are generated above the Hopf bifurcation.@S1063-651X~97!01912-0#

PACS number~s!: 05.40.1j, 42.65.Sf, 42.60.Mi
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I. INTRODUCTION

Localized structures~LS’s! are solitonlike ~i.e., ho-
moclinic! solutions of partial differential equations that co
nect coexisting stable homogeneous and inhomogen
steady states. This situation is realized, for instance, b
subcritical Turing instability. In optics, an early report o
localized structures was given in@1#, which described nu-
merical simulations of pulse propagation in bistable syste
Later on it was shown that the existence of LS’s does
require a bistable homogeneous steady state. They were
lyzed more systematically in@2# in relation with a general-
ized Swift-Hohenberg equation. Analytical results on h
moclinic solutions of this equation are found in@3#. More
recently, LS’s have been obtained in an absorptive nonlin
optical system@4#. The purpose of this paper is to analy
the interaction of Turing and Hopf instabilities in a nonline
optical system and to study the implications of this inter
tion in the dynamics of the LS’s. Such an interaction h
been investigated in nonlinear chemistry and hydrodynam
where it stems from reaction-diffusion equations@5#. The
results of these analyses have been compared with ex
ments @6#. The main difference brought in by considerin
optical systems is that the diffusion is often replaced by d
fraction. When the system is nonlinear this leads to react
diffraction equations, which modifies completely the stabil
problem. For instance, negative diffusion leads to unsta
solutions, while the diffraction coefficient may be positive
negative, corresponding to beam focusing or defocus
Furthermore, the diffraction coefficient is essentially the
verse of the photon wave number that is constrained by
momentum conservation law. Hence it cannot be var
freely. In optics, time-dependent transverse periodic patte
have been studied numerically in a bistable system where
Hopf bifurcation is on the lower branch and the Turing b
furcation is on the upper branch@7#. In this model, the
Lugiato-Lefever equation„the LL model includes diffraction
@8#… for the field is coupled to a diffusion equation modelin
the nonlocal response of the nonlinear medium. For the
generate optical parametric oscillator, it was shown that
561063-651X/97/56~6!/6524~7!/$10.00
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Hopf bifurcation always appears after the Turing instabil
on the branch of steady-state solutions and that the dista
between the two instabilities cannot be made arbitra
small @9#. A similar result holds for intracavity second
harmonic generation. In both cases, the impossibility to c
trol the relative position of the two bifurcations is due to t
fact that the ratio of the diffraction coefficients is either 2
1/2 and cannot be varied. This results from the pha
matching condition@10#. A completely different mechanism
for the generation of time-periodic transverse patterns i
Hopf bifurcation emerging on the Turing branch as a seco
ary bifurcation. In this case, the Hopf instability arises fro
the nonlinear interaction between transverse modes. T
mechanism was described in@11# for two counterpropagating
coherent beams in a Kerr medium and in@12# for the LL
model.

This paper is organized as follows. After briefly introdu
ing the model of the degenerate optical parametric oscilla
~Sec. II!, we present a linear stability analysis of its no
trivial homogenous steady-state solutions~Sec. III!. The ana-
lytical and numerical analysis of the interaction between
Turing and Hopf instabilities is described in Sec. IV on t
basis of a normal form analysis. Stationary and time-perio
localized structures are studied in Sec. V in relation with
various dynamical behaviors identified in the bifurcation d
grams derived in Sec. IV. We conclude in Sec. VI.

II. DESCRIPTION OF THE MODEL

In this paper we consider a degenerate optical parame
oscillator ~DOPO! driven by an external field at frequenc
2v. This field is converted by a quadratic nonlinear mediu
into a field at frequencyv. In addition, we assume the pre
ence of a saturable absorber~SA! that acts selectively on the
field at frequencyv. Saturable absorption is modeled by
collection of two-level atoms that leads to an intensi
dependent effective absorption coefficient. This model
the DOPOSA was introduced in@14#. Assuming fast atomic
relaxation, the evolution equations in reduced variables a
6524 © 1997 The American Physical Society
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]E1

]t
52E11E1* E22

RE1

11SuE1u2
12iL'E1 , ~1!

]E2

]t
52g~E21E1

22EI !1 iL'E2 . ~2!

In these equations,Ej is the field at frequencyj v, EI is the
driving field which is chosen real by convention, andg is the
ratio of the photon lifetimes at frequenciesv and 2v. The
saturable absorber is characterized by its saturation inten
(1/S) and its linear loss coefficientR. L' is the transverse
Laplacian. Time has been scaled such that the decay ra
the field E1 is unity. Note that we assume, for the sake
simplicity, that both fields are resonant with the optical ca
ity ~i.e., zero cavity detunings!.

III. LINEAR STABILITY ANALYSIS

Equations~1! and ~2! have two types of homogeneou
steady-state solutions, withE1 equal to or different from zero

Ē150, Ē25EI , ~3!

EI511uĒ1u21
R

11SuĒ1u2
, Ē25EI2 Ē1

2 , ~4!

where the overbar refers to steady states. ForRS,1
(RS.1) the steady-state intensityuĒ1u2, as a function of
EI , is monostable~bistable!. The solution~3! is stable when
EI,Eth511R. The nonlasing~3! and the lasing~4! solu-
tions coincide atEI5Eth . We perform a linear stability
analysis of the steady state. With transverse periodic bou
aries, the linear deviation from the steady lasing state is p
portional to exp(lt1ik•r ), where r stands for the transvers
coordinates and the transverse wave vectork verifies the
relation (L'1k2)exp(ik•r )50. This formulation leads to a
characteristic polynomial that is quartic inl and whose co-
efficients are functions ofK[k4. For the variables
u1,25E1,22 Ē1,2 andu1,2* 5E1,2* 2 Ē1,2* , the quartic polynomial
is

P~4,l!5(
l 50

4

f nln, ~5!

where

f 451, ~6!

f 352~g2b2!, ~7!

f 254guĒ1u224gb215K1b2
2 2b1

2 1g2, ~8!

f 152g~b2
2 2b1

2 !14guĒ1u2~g2b2!22b2~g21K !

18gK, ~9!

f 05~b2
2 2b1

2 14K !~g21K !24guĒ1u2

3~gb212K2guĒ1u2!, ~10!
ity

of
f
-

d-
o-

with

b65616aR~16aSuĒ1u2!, a5
1

11SuĒ1u2
.

Turing instabilities correspond to the occurrence of a z
real root ~i.e., f 050) of the characteristic polynomial with
KÞ0. The equationf 050 determines the intrinsic wav
numberkT and the critical-field amplitudeE1T at which the
Turing bifurcation takes place. This equation is implicit sin
the relation between the field of mode 1 and the input field
given by Eqs.~4!.

Hopf bifurcations occur if a pair of complex-conjuga
roots has a vanishing real part and a nonzero imaginary p
Our calculations show that there can be zero, one, or
Hopf bifurcations. The critical intensities of mode 1 at th
Hopf bifurcations are

uĒ1H6u25
R2g6AR~R22g!

gS
.

The number of Hopf bifurcations is determined by the rea
condition of uĒ1H6u2. The frequency of the periodic solu
tions that emerges at the Hopf bifurcation
VH

2 5g(2uĒ1H6u22g). An exhaustive classification of th
bifurcation diagram for the homogeneous steady-state s
tions is given in@14#.

We fix g51, S50.1, and letR and EI be the control
parameters. For these parameters, there are two Hopf b
cations. We concentrate on the Hopf bifurcation that has
lower-intensity threshold. We find that there is a critical li
ear lossRc'5.47 such that forR larger~smaller! thanRc the
Hopf bifurcation occurs after~before! the Turing instability.
For R5Rc , the system undergoes both instabilities for t
same value of the input intensity. In Fig. 1 we display t
bifurcation diagrams of the steady-state solutions in the
rameter plane (I 1[uĒ1u2,k4). We show in this figure the
stable and unstable domains associated with inhomogen
perturbations.

We stress that this analysis is performed only for the
mogeneous lasing solution~4!. A similar stability analysis
shows that the homogeneous nonlasing solution~3! is always
stable against small transverses perturbations. Note also
in the absence of saturable absorber (S50), the Turing in-
stability can occur on the trivial solution branch, i.e.,EI,Eth
@9#.

IV. INTERACTION BETWEEN TURING AND HOPF
INSTABILITIES

A. Amplitude equations

We have shown in Sec. III that the DOPOSA model e
hibits Turing and Hopf bifurcations leading to steady inh
mogeneous transverse and/or homogeneous temp
periodic patterns. The main point now is to study the stabi
of the emerging branches, in particular to show analytica
that the system can exhibit a bistability between the H
and Turing branches. To this end, we develop a stand
nonlinear analysis and derive amplitude equations. To c
ture analytically the nature of the interaction between
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6526 56M. TLIDI, PAUL MANDEL, AND M. HAELTERMAN
Hopf and Turing branches, we work in the vicinity of th
codimension-2 pointEI5EIH5EIT , where the two bifurca-
tions coincide. At this point, one of the real roots of t
characteristic equation~5! vanishes~with a finite intrinsic
wave numberk5kcÞ0) and two others roots are pure
imaginaryl56 iVH . Near this critical point, the dynamic
of the system can be described by a linear superpositio
the Hopf and the Turing solutionsH(t)1Hexp(iVHt)1
M(t)1Mexp(ikcx)1c.c., where1H and1M are the eigenvector
of the linearized operator derived from Eqs.~1! and ~2! and
H(t) andM (t) are, respectively, the amplitude of the Ho
and the Turing modes. By performing an expansion in ter
of a small parameter that measures the distance from
critical point, the evolution equation of the amplitudesH(t)
and M (t) can be obtained from the solvability conditio
Such an analysis has been performed in the case of reac
diffusion systems where the Hopf and the Turing bifurc
tions are both supercritical@5#. If the Turing bifurcation is
supercritical, third-order terms are sufficient to provide t
evolution equations of the amplitude functions. If the Turi
bifurcation is subcritical, fifth-order terms are necessary.
this case, the evolution of the amplitude associated with
Turing and the Hopf solutions@13# is given by

FIG. 1. Linear stability curves associated with the Hopf and
Turing solutions. We plot the fourth power of the transverse wa

number versus the homogeneous intensityI 15uĒ1u2. The param-
eters areg51.0 andS50.1. By changing the value of the pum
parameterR, we can distinguish beteween three cases:~a! R55.0,
~b! R56.0, and~c! R55.47.
of
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]M

]t
5MM1 l 2uHu2M1 l 3uM u2uHu2M1 l 4uHu4M ,

~11!

]H

]t
5HH1~k21 ik28!uM u2H1~k31 ik38!uHu2uM u2H

1~k41 ik48!uM u4H, ~12!

where M5bm1 l 1uM u22uM u4 and H5bh1 ibh
82(11

ik0)uHu21(k11 ik1
8)uHu4. The coefficients bm5EI2EIT

and bh5EI2EIH measure, respectively, the distance fro
the Turing and the Hopf bifurcations. In the vicinity of th
codimension-2 point, the coefficientl 1 is always positive,
which means that the Turing branch emerges subcritic
from the lasing homogeneous state. Hence, forbm.0, the
stable solution is on the upper~i.e., large amplitude! branch
of solutions. On the other hand, the Hopf oscillatory bran
is supercritical: Oscillation amplitudes vanish asbh→0. The
amplitude of the Hopf solution is therefore expected to
much smaller than the amplitude of the Turing structure.
the following discussion, we therefore neglect the terms p
portional touHu4. Furthermore, we impose, for mathematic
simplicity, k35k450. As will be seen in Sec. IV B, thes
approximations are in good agreement with the numer
simulations. In addition, we eliminate adiabatically th
phasesFm andFh, which are introduced through the pola
decompositionsM5mexp(iFm) and H5hexp(iFh). Under
these approximations, the dynamics of the DOPOSA near
codimension-2 point admits four types of solutions:~i! the
uniform solutionm050 andh050, ~ii ! the pure Turing so-
lution m1s,2s

2 5( l 16Al 1
214bm)/2, ~iii ! the pure Hopf solu-

tion h0s56Abh, and~iv! the Hopf-Turing mixed-mode so
lution M1s,2s

2 5@2k6Ak224(k2l 321)(bm1 l 2bh)#/2(k2l 3

21) andH1s,2s
2 5bh1k2M1s,2s

2 , wherek5k2l 21 l 3bh1 l 1.
For now, we restrict our analysis to the domain of para

eter space in which the Hopf bifurcation is the primary i
stability: bh2bm5EIT2EIH.0. Let us begin with the
study of the linear stability of the solutions~i!–~iv!. The
trivial solution ~i! becomes unstable whenbh.0. We per-
turb the pure Turing solution~ii ! as M5m1s,2s1u and
H5v, with u,v!1. We substitute these relations into th
simplified real form of the amplitude equations~11! and~12!
and upon linearization we obtain

]u

]t
522j1u,

]v
]t

5j2v, ~13!

wherej152bm1 l 1m1s,2s
2 andj252bh1k2m1s,2s

2 . From Eq.
~13! we deduce that the Turing solution~ii ! is stable when
the two conditions are met:j1.0 andj2,0. Similarly, the
linear stability analysis of the solution~iii ! shows that the
pure Hopf solution~iii ! remains stable forbh.0 only if
bm.k2bh . Finally, the linear stability of Hopf-Turing solu
tion ~iv! shows that it is stable if the roots of the quadra
polynomialL22(m1n)L1(m1s)n50 are both negative
with

e
e
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m5bm1 l 2bh1@~3k2l 325!M1s,2s
2 13l 1

1k2l 213l 3bh#M1s,2s
2 , ~14!

n52k2~ l 3M1s,2s
2 1 l 2!, s522~bh1k2M1s,2s

2 !. ~15!

The results of the above stability analysis are summariz
in the bifurcation diagram displayed in Fig. 2, where w
have plotted the amplitude of the solutions~i!–~iv! versus
bh . Both the pure Turing and Hopf-Turing branches appe
subcritically, while the homogeneous Hopf branch emerg
supercritically. For larger values ofbh , the steady inhomo-
geneous solutionm2s emerges from the homogeneous solu
tion at the Turing point and is unstable until it reaches a lim
point bh5b l from which the branchm1s emerges stably. As
a consequence of this subcriticality, there is a doma
b l,bh,0 of bistability between the Turing branch and the
homogeneous steady-state branch. This solution becomes
stable forbh.0 and a stable Hopf branchh0s is observed.
On the other hand, the Turing branch persists up to the va
bh5bht . As can be seen in Fig. 2, there is a finite domai
0,bh,bht in which there is bistability between the Hopf
and the Turing branches.

Above the transition pointbh5bht the Turing branch be-
comes unstable and the dynamics of the system give way
Hopf-Turing solutions. However, the pure Hopf oscillatory
solution remains stable and coexists with the Hopf-Turin
solutions.

FIG. 2. Bifurcation diagram obtained from the normal form
analysis. The full and the dotted lines correspond, respectively,
stable and unstable solutions. The parameters arel 152.1, l 251.5,
l 350.6, andk2520.2. bc5EIT2EIH is the distance between the
two thresholds associated with the Turing and the Hopf bifurcatio
d
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B. Numerical simulations

Our numerical simulations are concentrated on the par
eter range corresponding to monostability of the steady-s
homogeneous solutionsRS,1 and to a leading Hopf bifur-
cationEIH,EIT . In this way, we can directly compare ou
results with those of the normal form analysis derived in
preceding subsection. To this end, we chooseR54.5,
S50.1, andg51. The corresponding bifurcation diagram
shown in Fig. 3. The Turing bifurcation atEIT is subcritical
and generates a domain of bistabilityEIL,EI,EIT . The
upper branch corresponds to stable stripes~the numerical
simulations are performed with one transverse dimens!
that fill the transverse plane. Stars on the upper branch
the maximum of the stripe amplitude. AtEI5EIH , a super-
critical Hopf bifurcation takes place.

We have verified that the stripes displayed in Fig. 3 a
stable. Stability means here that taking the stripe struc
obtained for a givenEI1 as an initial condition, integration o
Eqs. ~1! and ~2! for EI5EI16« yields a new stripe pattern
with the same wave number but a slightly modified amp
tude. The time-periodic solutions that emerge from the H
bifurcation are obtained by taking as initial condition th
unstable homogeneous state perturbed by a small-ampli
white noise. In the long-time limit, we obtain a homogeneo
solution in which all points oscillate with the same phase a
amplitude. The numerical results, displayed in Fig. 3, p
vide evidence for the fact that stable Turing structures a
homogeneous Hopf solutions coexist in the dom
EIH,EI,ETH . Note that bistability between the pure Hop
and Turing solutions as a dominant dynamical behavior
been observed in two-component reaction-diffusion syste
@5,6#.

In the domainEI.ETH , Turing solutions become un
stable and give way to Hopf-Turing solutions. These so

to

.

FIG. 3. Bifurcation diagram obtained numerically for the fie
uE1u at the frequencyv versusEI . The parameters areR54.5,
S50.1, andg51. The full and the dotted lines indicate, respe
tively, the stable and unstable homogeneous steady states. The
indicate the difference between the maximum and minimum Tur
amplitudes. The black~white! circles correspond to the differenc
between the maximun and minimum Hopf-Turing mixed-mo
~Hopf! amplitudes.
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6528 56M. TLIDI, PAUL MANDEL, AND M. HAELTERMAN
tions naturally exhibit oscillations in both space and tim
Such solutions are illustrated in Fig. 4. Note that f
EI.ETH there is also bistability between the mixed Hop
Turing branch and the pure Hopf solutions.

As we shall see in the following section, the occurrence
bistability between the pure Hopf branch and either the p
Turing or Hopf-Turing mixed-mode branches leads to a la
class of localized patterns. This problem is analyzed in
following section.

V. STATIONARY AND TIME-PERIODIC
LOCALIZED STRUCTURES

The numerical simulations reported in this section are
tained in one transverse dimension, using periodic bound
conditions. Let us consider the various domains of input fi
amplitude that appear in the bifurcation diagram of Fig.
As we shall see, different types of localized structures e
that are associated with each of these domains. We con
here only a numerical study of these solutions, an analyt
approach to the problem being far beyond the scope of
present report. ForEIL,EI,EIH corresponding stead
stripes~pure Turing branch, see Sec. IV B! we have observed
steady LS’s. The LS’s connect the branch of Turing patte
~in this case, the stripes! and the stable homogeneous so
tion. Two examples of steady LS’s are displayed in Fi
5~a! and 5~b!. The difference between both cases is due o
to the initial condition, all other parameters being the sam
They have the same properties as those analyzed in@2,15#. In
the domainEIH,EI,ETH , the homogeneous time-period
solution coexists with steady stripes. Time-periodic LS’s
sociated with these coexisting solutions have been obser
A typical space-time configuration of the electric field
shown in Figs. 5~c! and 5~d!. In this example the LS consist
of two stationary peaks. Their amplitude and the dista
between them are essentially those of the Turing structure

FIG. 4. Time-space map for the Hopf-Turing mixed-mode so
tions. The parameters areg51, R54.5, S50.1, andEI56.78. ~a!
Real part of the electric fieldE1. ~b! Real part of the electric field
E2. Maxima are plain white and mesh number integration is 80
.

f
e
e
e

-
ry
d
.
st
er

al
e

s
-
.
y
.

-
d.

e
In

order to seed a LS, the initial homogeneous state has b
perturbed by a local amplitude increase. Such perturbat
evolve rapidly towards stable LS’s. The number of peaks
the LS depends on the initial condition. Note that the unp
turbed background should undergo the Hopf instability a
oscillate homogeneously. However, it appears that this tim
periodic structure~pure Hopf mode! is unstable against the
growth of traveling waves~TW’s!. The simulations show
that these TW’s propagate with opposite directions on e
side of the peaks. These TW’s have the for
exp@i(2p/LTW)(x6vt)#1c.c. The wavelengthLTW selected
by the nonlinear dynamics is not linked to the Turing wav
length and the amplitude of the TW’s is smaller than that
the Turing structure. This feature is illustrated in Fig.
where the time-periodic LS of Fig. 5 is represented at th
different times. Clearly the TW’s originate from the wings
the LS. Therefore, they appear to be the result of a nonlin
interaction between the homogeneous Hopf modes and
LS. Let us notice that the temporal frequency of the TW
corresponds to the frequency of the pure Hopf solution

-

FIG. 5. Localized patterns. Same parameters as in Fig. 3.
real part ofE1 is plotted in the time and transverse space coordin
plane. The color code is the same for the four figures: Re(E1) varies
from its minima~black! to its maxima~white!. ~a! and ~b! Steady
localized structures forEI55.8. ~c! and ~d! Self-pulsing localized
structures forEI56.5. The mesh number for transverse integrat
is 300.
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56 6529SPATIOTEMPORAL PATTERNS AND LOCALIZED . . .
served in the absence of LS~i.e., v5VHLTW/2p).
As the input electric field is further increased, the Turi

structures become unstable and give rise to the Hopf-Tu
mixed mode atEI5ETH , as discussed in Secs. III and IV. I
the domainEI.ETH , the Hopf homogeneous oscillatory s
lution coexists with the stable Turing-Hopf space- and tim
periodic pattern. In this domain, another class of tim
periodic LS’s is observed. They are illustrated in Fig.
They consist of oscillating multiple peaks originating fro
the Hopf-Turing mixed mode, surrounded by traveli
waves propagating in opposite directions. The number of
cillating peaks included in the LS depends only on the ini
condition.

VI. CONCLUSION

In conclusion, by using the normal form analysis for t
description of the dynamics of a degenerate optical param
ric oscillator with saturable absorber in the vicinity of th
codimension-two point, we have studied the interaction
tween subcritical Turing and supercritical Hopf bifurcation
This analysis reveals the existence of a domain in wh

FIG. 6. Three sections taken from Fig. 5~c!. The time sequence
is t1,t2,t3.
.

g

-
-
.

s-
l

t-

-
.
h

bistability between the Turing structures and the Hopf so
tions occurs. Such behaviors have been described
reaction-diffusion processes where the two bifurcations
both supercritical@5,6#. As the input field amplitude is fur-
ther increased, the Turing structures lose their stability a
we observe the coexistence of Hopf-Turing spatio-tempo
structures and the pure Hopf modes. These results obta
from the normal form analysis are supported by numeri
simulations of the full dynamical model@Eqs. ~1! and ~2!#.
We have shown that the coexistence of different types
solutions~stationary and/or time periodic! is associated with
a large variety of localized structures. A numerical study
pattern formation in the DOPOSA, performed with the he
of a detailed analysis of the bifurcation diagrams, allowed
to identify previously unrecognized time-periodic localize
structures. Our predictions are applicable to other nonlin
systems and are important for the identification and the
derstanding of the various spatiotemporal behaviors
served in practical devices. The bifurcation analysis of
two-transverse-dimensional problem will be the subject
future work.
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FIG. 7. Bands of the localized Hopf-Turing mixed-mode so
tion surrounded by diverging traveling waves. The parameters
g51, R54.5, S50.1, andEI56.78. ~a! Real part of the electric
field E1. ~b! Real part of the electric fieldE2. Maxima are plain
white and the mesh number integration is 300.
-
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